Math 601 Midterm 1

Name:

\qquad

This exam has 9 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	18	
2	10	
3	15	
4	10	
5	10	
6	6	
7	10	
8	6	
9	15	
Total:	100	

Question 1. (18 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) Let U and W be subspaces of the vector space V. Then

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W
$$

Solution: False.
(b) An $(n \times n)$ matrix A is invertible if and only if the linear system $A \mathbf{x}=\mathbf{0}$ has a unique solution.

Solution: True.
(c) The rank of a matrix is equal to the dimension of its column space.

Solution: True.
(d) We can find an $(n \times n)$ matrix A such that A is invertible but A^{T} is not invertible.

Solution: False.
(e) For a homogeneous system of rank r and n unknowns, the dimension of the solution space is $n-r$.

Solution: True.
(f) Let v_{1}, \cdots, v_{k} and w be vectors in a vector space V. Suppose v_{1}, \cdots, v_{k} are linearly independent, then the set $\left\{w, v_{1}, \cdots, v_{k}\right\}$ is linearly independent if and only if w cannot be written as a linear combination of v_{1}, \cdots, v_{k}.

Solution: True.

Question 2. (10 pts)

Given two lines

$$
L_{1}: x=t+1, y=3 t+1, z=2 t-1,
$$

and

$$
L_{2}: x=2 t-2, y=2 t+3, z=t+1,
$$

suppose a plane H is parallel to both L_{1} and L_{2}. Moreover, H passes through the point $(0,1,0)$. Find an equation of H.

Solution: The direction vector of L is orthogonal to both the normal vector $u=$ $(1,3,2)$ of the plane and the direction vector $v=(2,2,1)$ of the other line.
Calculate the cross product of u and v :

$$
u \times v=(-1,3,-4)
$$

So an equation of H is

$$
-x+3 y-4 z=3
$$

Question 3. (15 pts)
Given

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1 \\
3 & 6 & 9 & 6 & 3 \\
1 & 2 & 4 & 1 & 2 \\
2 & 4 & 9 & 1 & 2
\end{array}\right]
$$

(a) Find a basis of $\operatorname{Ker}(A)$.

Solution: First, use elementary row operations to get the reduced row echelon form of A.

$$
\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 5 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So all elements in $\operatorname{Ker} A$ are of the form

$$
t\left[\begin{array}{r}
-5 \\
0 \\
1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

So

$$
v_{1}=\left[\begin{array}{r}
-5 \\
0 \\
1 \\
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

form a basis of the kernel.
(b) Find a basis of the row space of A.

Solution: The three nonzero rows in the reduced row echelon form of A form a basis of the row space of A. That is

$$
\begin{gathered}
u_{1}=(1,2,0,5,0) \\
u_{2}=(0,0,1,-1,0) \\
u_{3}=(0,0,0,0,1)
\end{gathered}
$$

form a basis of the row space of A.
(c) Find a basis of $\operatorname{Im}(A)$.

Solution: Use $\operatorname{rref}(A)$ from the part (a), we see that the 1 st, 3 rd and 5 th columns of A form a basis of $\operatorname{Im}(A)$. That is,

$$
w_{1}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right], w_{2}=\left[\begin{array}{l}
3 \\
9 \\
4 \\
9
\end{array}\right], w_{3}=\left[\begin{array}{l}
1 \\
3 \\
2 \\
2
\end{array}\right]
$$

form a basis of $\operatorname{Im}(A)$.

Question 4. (10 pts)
Determine whether

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], v_{3}=\left[\begin{array}{r}
1 \\
4 \\
7 \\
10
\end{array}\right] \text { and } v_{4}=\left[\begin{array}{r}
0 \\
4 \\
-1 \\
2
\end{array}\right]
$$

are linearly independent or not.

Solution: Form the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 2 & 4 & 4 \\
1 & 3 & 7 & -1 \\
1 & 4 & 10 & 2
\end{array}\right]
$$

by applying elementary row operations, we get an echelon form

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The rank is 3 , which is <4. In other words, v_{1}, v_{2}, v_{3} and v_{4} are linearly dependent.

Question 5. (10 pts)
Let $M_{2}(\mathbb{R})$ be the space of all (2×2) matrices with real coefficients. The set

$$
S=\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

is a basis of $M_{2}(\mathbb{R})$. Find the coordinates of $A=\left(\begin{array}{cc}2 & 3 \\ 4 & -7\end{array}\right)$ with respect to the basis S.

Solution: We need to write

$$
\left(\begin{array}{cc}
2 & 3 \\
4 & -7
\end{array}\right)=a_{1}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+a_{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)+a_{3}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)+a_{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

That is, we need to solve the linear system

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+a_{3}+a_{4}=2 \\
a_{1}-a_{2}-a_{3}=3 \\
a_{1}+a_{2}=4 \\
a_{1}=-7
\end{array}\right.
$$

Simply use back substitution. We have

$$
a_{1}=-7, a_{2}=11, a_{3}=-21, a_{4}=19
$$

So

$$
[A]_{S}=\left[\begin{array}{c}
-7 \\
11 \\
-21 \\
19
\end{array}\right]
$$

Question 6. (6 pts)
Let A be an $(n \times m)$ matrix. Show that the solution space of $A \mathbf{x}=\mathbf{0}$ is a subspace of \mathbb{R}^{m}.

Solution: Denote the solution space by W.
(1) $0 \in W$, since $A \mathbf{0}=\mathbf{0}$,
(2) If $v, w \in W$, then

$$
A(v+w)=A(v)+A(w)=0+0=0 .
$$

So $v+w \in W$.
(3) If $w \in W$ and $k \in \mathbb{R}$, then

$$
A(k w)=k A(w)=k \cdot 0=0 .
$$

So $k w \in W$.
Therefore W is a subspace of \mathbb{R}^{m}.

Question 7. (10 pts)

Show that $(2 t-1),(t+3)$ and $(t+1)^{2}$ form a basis of $\mathbb{P}_{2}(t)$, where $\mathbb{P}_{2}(t)$ is the space of all polynomials of degree ≤ 2.

Solution: There are various ways to solve this problem.
(1) First method: prove that $(t-1),(t+1)$ and $(t-1)^{2}$ are linearly independent and span $\mathbb{P}_{2}(t)$.
(2) Second method: prove that $(t-1),(t+1)$ and $(t-1)^{2}$ are linearly independent and use the fact $\operatorname{dim} \mathbb{P}_{2}(t)=3$.
(3) third method: prove that $(t-1),(t+1)$ and $(t-1)^{2}$ span $\mathbb{P}_{2}(t)$ and use the fact $\operatorname{dim} \mathbb{P}_{2}(t)=3$.

Let us the second method. We know that $S=\left\{1, t, t^{2}\right\}$ is a basis of $\mathbb{P}_{2}(t)$. Write down the coordinate vectors of $(2 t-1),(t+3)$ and $(t+1)^{2}$ with respect to S.

$$
v_{1}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

It suffices to show that v_{1}, v_{2} and v_{3} are linearly independent. Form the matrix

$$
\left[\begin{array}{ccc}
-1 & 3 & 1 \\
2 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

It echelon form is

$$
\left[\begin{array}{ccc}
-1 & 3 & 1 \\
0 & 7 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

which has rank $=3$. So v_{1}, v_{2} and v_{3} are linearly independent
Now we know that $\operatorname{dim} \mathbb{P}_{2}(t)=3$. Then any 3 linearly independent vectors of $\mathbb{P}_{2}(t)$ form a basis. Therefore $(2 t-1),(t+3)$ and $(t+1)^{2}$ form a basis.

Question 8. (6 pts)

Let A be an (2×2) matrix. If we write

$$
A=\left[\begin{array}{ll}
v & w
\end{array}\right]
$$

where v and w are the columns of A, then we know that

$$
A^{T}=\left[\begin{array}{c}
v^{T} \\
w^{T}
\end{array}\right]
$$

where v^{T} and w^{T} are the rows of A^{T}. Use this fact to show that if A is orthogonal, then v and w are orthogonal to each other.

Solution: By definition, A is orthogonal if $A A^{T}=A^{T} A=I$.
We have

$$
A^{T} A=\left[\begin{array}{c}
v^{T} \\
w^{T}
\end{array}\right]\left[\begin{array}{ll}
v & w
\end{array}\right]=\left[\begin{array}{cc}
v^{T} v & v^{T} w \\
w^{T} v & w^{T} w
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Notice that $v^{T} w$ is precisely the dot product of v with w. Therefore, if A is orthogonal, then $v \cdot w=v^{T} w=0$. So v and w are orthogonal.

Question 9. (15 pts)

The set of vectors $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ with $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is a basis of \mathbb{R}^{3}. Also, the set of vectors $T=\left\{w_{1}, w_{2}, w_{3}\right\}$ with

$$
w_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], w_{2}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], w_{3}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

is another basis of \mathbb{R}^{3}. Accept these facts.
(a) Find the coordinates of w_{1} with respect to S. Do the same for w_{2} and w_{3}, that is, find the coordinates of w_{2} and w_{3} with respect to S.

Solution: Need to solve for a_{1}, a_{2} and a_{3} in

$$
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=w_{1}
$$

equivalently, solve the system

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We get $a_{3}=3, a_{2}=-1$ and $a_{1}=-1$. So $\left[w_{1}\right]_{S}=\left[\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right]$.
Similarly, we have

$$
\left[w_{2}\right]_{S}=\left[\begin{array}{c}
-1 \\
-1 \\
4
\end{array}\right],\left[w_{3}\right]_{S}=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
$$

(b) Take the coordinate vectors (with respect to S) of w_{1}, w_{2} and w_{3} from Part (a), and use these coordinate vectors as column vectors to form a matrix A. Determine whether A is invertible.

Solution:

$$
A=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -1 & -1 \\
3 & 4 & 2
\end{array}\right]
$$

Its reduced echelon form is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

So A is invertible.

